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ABSTRACT 

Moduli spaces for covers of the Riemann sphere have been constructed in 

a joint work with M. Fried [FV1]. They were used to realize groups as 

Galois groups [FV1], [V61], and to determine the absolute Galois group of 

large fields [FV2]. Here we simplify and extend the construction of these 

moduli spaces. 

Introduct ion  

Moduli spaces for covers of the Riemann sphere were first studied by Hurwitz [Hu] 

in the case of simple covers. Fulton [Fu] introduced the algebraic structure on 

these moduli spaces for simple covers. The theory for arbitrary covers originated 

in [Fr], and was further developed in joint work of M. Fried and the author 

[FV1]. It has been applied to solve embedding problems over PAC-fields [FV2] 

(leading to a structural result about the absolute Galois group of the rationals); 

as further application, many general linear and unitary groups were realized as 

Galois groups over the rationals, see [VS1], [V52], [V53]. 

For further Galois realizations, a certain extension of the main result of [FV1] 

is needed, where the Hurwitz braid group is replaced by the original Artin braid 

group. This could have been derived in the context of the [FV1] paper, but when 
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working on this, the author found a more direct description of the algebraic 

structure on the moduli spaces. This new approach does not rely on the general- 

ized Riemann existence theorem, but needs only the l~dimensional version (the 

classical Riemann existence theorem), and some basic results from the theory of 

several complex variables (like Riemann's extension theorem for normal complex 

spaces). Note that also the parallel field-theoretic work of Matzat [Mal], [Ma2] is 

based on the generalized existence theorem (more precisely, on the identification 

between the algebraic fundamental group and the completion of the topological 

one). 
The moduli spaces 7-/~ n (G) arise firstly as topological coverings of the comple- 

ment/~r of the discriminant locus in projective r-space. Thus these spaces are 

determined topologically by a permutation representation of the fundamental 

group of the base space/~ .  This permutation representation has been described 

explicitly in [FV1]. In w we give the corresponding result for the new spaces 

~ ( G )  constructed in the present paper. 

In w we begin again with the topological definition. A new feature is here that 

we give a direct topological definition of the family ~ ( G )  of all Galois covers of 

F 1 with Galois group G and r branch points. In w it is shown that 7-/~~ and 

T~(G) are the union of closed and open subspaces each of which can be identified 

with the normalization of a suitable open subset of projective r-space in a certain 

field associated to a generic cover in the family. This yields the algebraic structure 

on the moduli spaces. 

In w we state the corollaries (needed for further Galois realizations in [V53]) 

that  gave the original motivation for this paper. Recall that the Artin braid group 

B~ is the fundamental group of the complement (9~ of the discriminant locus in 

affine r-space. We show that the topological covering ~/~(G) of (9~ associated 

to the braiding action of B~ on certain generating systems of a finite group G 

has a structure of Q-variety. Further, the group Aut(G) acts on this variety in 

a natural way. The corresponding fact was known for the braiding action on 

Inn(G)-classes of generating systems (by [FV1]), but not for the action on the 

generating systems themselves. 

In w we study certain subspaces of ~/~ (G) associated to r-tuples of conjugacy 

classes of G. In particular, we determine the field of definition of these subspaces. 

This is again parallel to the corresponding results for ~/~(G) in [FV1]. 

NOTATIONS. All occurring fields are of characteristic 0. The algebraic closure 
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of a field k is denoted by/c, and we let Gk = G(k/k) denote the absolute Galois 

group of k. A field L is said to be regular over a subfield k if k is algebraically 

closed in L. 

The field of rationals (resp., complexes) is denoted by Q (resp., C). We let p1 

denote the Riemann sphere C t9 {cx~}, viewed according to context as a Riemann 

surface or as an algebraic curve defined over Q (in the natural  way). The funda- 

mental group of a topological space Y, based at y E Y, is denoted 7h(Y, y). By 

"covering" we mean an unramified topological covering (in the sense of covering 

space theory) of not necessarily connected spaces. The word "cover", on the 

other hand, is reserved for connected branched covers of the Riemann sphere. 

The algebraic varieties we consider are all defined over subfields of C. We 

identify a variety with its set of complex points. 

Throughout the paper  we fix the following: a finite group G, and an integer 

r > 3 .  

ACKNOWLEDGEMENT: I would like to thank Moshe Jarden for his particular 

interest in, and many discussions on this work. More important ,  I want to thank 

him for organizing the Field Arithmetic Year at the Insti tute for Advanced Stud- 

ies in Jerusalem, which provided excellent working conditions for all participants. 

1. T o p o l o g i c a l  de f in i t i on  o f  t h e  m o d u l i  s p a c e s  

1.1 Embed the affine r-space A ~ into the projective r-space Fr by regarding 

A ~ as the space of monic complex polynomials of degree r, and P~ as the space 

of all nonzero complex polynomials of degree at most r up to multiplication by a 

nonzero constant. Consider the classical discriminant locus in A ~, corresponding 

to the polynomials with repeated roots, and denote its closure in P~ by D~. We 

will work with the space L/~ ~P~ \ D~, which we view as the space of all subsets 

of cardinality r of the Riemann sphere p1 = C U {cx~}. Tha t  is, we identify a 

point of/dr with the set of roots of a corresponding polynomial, where we count 

c~ as a root if the degree of the polynomial is less than r (the degree is then 

necessarily r - 1). Under this identification, the (open) subspace (9~ t f  A ~ \ D~ 

of/dr becomes the space of all subsets of cardinality r of C. 

The spaces/dr and (9~ have a natural  structure as algebraic variety defined 

over ~. For the moment  we consider/dr only as a complex manifold. I ts  (com- 

plex) topology can be described as follows: For any pairwise disjoint open discs 
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D1, . . . ,D,  on ~1 consider the set of all a E/4~ with [aA Dil = 1 for i = 1, .. . ,r. 

These sets form a basis for the topology. 

1.2 From now on ~: X --+ 1?1 will always denote a (branched) cover of compact 

(connected) Riemann surfaces. Two such covers ~: X -~ ~1 and ~':  X '  -+ F1 are 

called equivalent if there exists an isomorphism 5: X -+ X '  with ~ '  o 5 = ~. We 

let Aut(X/lt  rl) denote the group of automorphisms of the cover ~: X --+ p1 (i.e., 

automorphisms 5 of X with ~ o 5 = ~). The cover ~ is called a Galois cover if 

A u t ( X / F  1) is transitive on the fibers of ~v. From now on we consider only Galois 

covers. 

Let a l , . . . ,  a~ E p1 be the branch points of the cover ~ and set a = {al, . . . ,  a~}. 

Then ~ restricts to an (unramified) topological cover ~o of the punctured sphere 

p1 \ a. Choose a base point ao on this punctured sphere. By the theory of cov- 

ering spaces, the equivalence class of ~o corresponds to a normal subgroup U~ of 

the fundamental  group F = 7rl(~ :D1 \ a, ao). In fact we have a 1-1 correspondence 

between the equivalence classes of Galois covers ~': X '  -* ~1 with branch points 

among a l , . . . ,  a , ,  and normal subgroups of F of finite index (see e.g. [Fu, 1.3]). 

Under this correspondence, the covers with exactly r branch points correspond 

to those subgroups of F that  do not contain the kernel of the natural  map from 

F to Fi ~-fTrl((P 1 \ a )  U {ai}, ao), for any i. 

Depending on the choice of a base point p E ~ - l ( a0 ) ,  we get a surjection t: F --* 

A u t ( X / P  1) as follows: For each pa th  3' representing an element of F, let q be the 

endpoint of the unique lift of 7 to X \ ~ - l ( a )  with initial point p; then t sends 

^ / to  the unique element e of A u t ( X / P  1) with e(q) = p. Varying p over ~ - l ( a 0 )  

means composing t with inner automorphisms of Aut(X/p1) .  

1.3 Let T/'n = 7-/~n(G) be the set of equivalence classes of pairs (~ ,h)  where 

~: X --~ ~1 is a Galois cover with r branch points, and h: A u t ( X / P  1) -+ G is an 

isomorphism; two such pairs (~, h) and (~': X '  -+ p1, h') are called equivalent 

if there is an isomorphism 5: X -+ X '  over p1 such that  h' o c~ = h, where 

c~: A u t ( X / ?  1) -+ Aut(X'/IP 1) is the isomorphism induced by 5 (i.e, c~(c) = 

5 o e o 5-1). Let [~, hi denote the equivalence class of the pair (~, h). 

Note that  points of 7-/i~ can equally well be thought of as equivalence classes 

of triples (a, ao, f ) ,  where a = { a l , . . . , a r }  E L/r, a0 C p1 \ a and f :  F = 

;rl(P 1 \ a, a0) --* G is a surjection that  does not factor through the canonical 

map F --* F~, for any i. Two such triples (a, ao, f )  and (h, 50, f )  are called equiv- 
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alent if a = ~ and there is a path 7 from a0 to n0 in •1 \ a such that  the induced 

map 7": 7/'1( If:D1 \ Q', ao )  ----+ 71"1( ~:~1 ~" a ,  a0)  satisfies ] o 7" = f .  

Here is the correspondence between the above pairs and triples. In the above 

notation, h and f are related by f = h o t, and U~ = ker(f) (= ker(t)). Varying 

p over ~- l (ao)  means composing t with inner automorphisms of Aut(X/p1). 

Therefore h and f determine each other up to inner automorphisms of G, which 

is compatible with the equivalence of pairs (resp., triples). 

1.4 Let T~(G) be the set of equivalence classes of triples (~, h,p) where ~: X -~ 

p1 is a Galois cover with r branch points, h: Aut (X/P  1) ~ G is an isomorphism, 

and p is a point of X such that ~(p) is not a branch point. Two such triples 

(~, h, p) and (p', h', p') are called equivalent if there is an isomorphism ~: X --+ X '  
over p1 such that ~(p) = p' and h'oc~ = h, where c~: Aut (X/P  1) ~ Aut(X'/IP 1) 

is the isomorphism induced by ~. Let I~, h, Pl denote the equivalence class of the 

triple (~, h, p). 

Note that points of ~ (G) can equally well be thought of as triples (a, ao, f )  as 

in 1.3 (but now with no equivalences between them). Given (~, h,p) as above, 

let al,  ..., ar be the branch points of ~o, set ao = ~o(p) and f = h o t; thereby, 

t: F --+ Aut(X/]P 1) is the surjection corresponding to the base point p E ~o-l(a0) 

(see 1.2). 

Let ~i.: ?_/io ~ / t r  be the map sending I~o, hi to the set of branch points of ~o. 

Let A: ~ ( G )  ~ 7-/~" and #: ~ ( G )  ~ p1 be the maps sending I~o,h, pI to ]~o,h I 

and ~(p), respectively. Let At: ~ ( G )  --+ ?-/~" • p1 be the map A • #, and let 

~(r): ~ ( G )  --*/~/r • p1 be Ar composed with ~ "  x id. 

Let S be the image of At (the set of all (p,a) E 7-/~" • p1 with a r ~"(p)  ), 

and let H(r + 1) be the image of O(r) (the set of all (a, a) E Hr • ~1 with a r a). 

1.5 The sets ~ ( G )  and ?-/i" carry a natural topology such that  r ~ ( G )  --+ 

bl(r + 1) and ~" :  7-/~" --~ Hr become (unramified) coverings. To specify a 

neighborhood J~4(Do, ..., D~) (resp., 2r ..., Dr)) of the point of ~ ( G )  (resp., 

7-/~~ represented by the triple ({al, ..., at}, a0 , / ) ,  choose pairwise disjoint discs 

D 0 , . . . , D r  around the points a o , . . . , a r .  Then the set A//(D0,...,D~) (resp., 

X(D1, ..., D~)) consists of all points represented by the triples ({5~, ..., mr}, n0, ]),  

such that there is exactly one ~ in each D~, and ] is the composition of the 

canonical isomorphisms 

(1) ~rl(pl \a ,~to)~=Trl(~l \ (D~LJ. . .LJDr) ,ao) '~;r~(~l \a ,  ao) 
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with f .  (Note these isomorphisms are canonical because Do is simply-connected). 

These sets form a basis for the neighborhoods of the given point of T~(G) (resp., 
~,o). 

Now one checks easily that actually the maps 7-/in ~/4~ and T~(G) --~ b/(r + 1) 

are coverings: Consider the inverse image of the open subset of/It  (resp.,/4(r + 1)) 

given by D1 , . . . ,  Dr (resp., Do , . . . ,  Dr) as in 1.1. This inverse image is a disjoint 

union of copies of D1 x . . .  • Dr (resp., Do x . . .  • Dr) corresponding to the 

various surjections lrl(l~ 1 \ ( D 1  U---(2 Dr), a0) ~ G (modulo Inn(G) in the case 

of 7-/in). Also the map A~: T~(G) ~ S is a covering if we equip S with the 

topology of an open subspace of 7-/~~ x p1. Through these coverings the spaces 

?_/in and T~(G) inherit a structure of complex manifold. 

For each automorphism A of G, define the maps CA: T~(G) --~ T~(G) and 

5A : ~.~in .._+ ~.~in by sending [qa, h,p] and [qo, h[ to [qa, Ah, p[ and [~,Ah[, 

respectively. One checks that these maps are continuous, hence they are auto- 

morphisms of the coverings r and ~in, respectively. Those maps eA with A �9 

Inn(G) are even automorphisms of the covering A~: T~(G) --* $, and the induced 

map T~(G)/Inn(G) --* $ is homeomorphic. 

1.6 Here is our main result (to be proved in w 

MAIN THEOREM: Let G be a finite group that can be generated by r -1  ele- 

ments. Then the spaces ~ 7 ( G )  and 7"~( G) have a unique structure as (reducible) 

algebraic varieties defined over Q (compatible with their analytic structure) so 

that the maps 

@'~: 7-/~'(G) --*/4r and T~(G) - ~  ?-/7(G) x p1 _., /4~ x ps 

and all cA, 6A (A E Aut(G) ) are algebraic morphisms defined over Q, and the 

following holds: For the action of the automorphisms ~ of C on the complex 

points of T-l~r'(G) and T~(G), we have 

[~,h[ ~ - - t ~ , h / 3 - 1 1  and I~,h, pl ~ = Iqa~,hl3-1,pZl. 

The meaning of the right hand sides of these formulas will be explained in 2.1 

and 2.2. The space L/r is considered as variety defined over Q in the natural 

way (see 1.1.). Note that the space ~ n ( G )  is non-empty if and only if G can be 

generated by r - 1  elements. (This follows from Riemann's existence theorem, cf. 

[FVl, 1.3]). 
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The result for 7-/~"(G) is essentially equivalent to Theorem 1 of [FV1]. (The 

results about the spaces 7/~b(G, U) follow immediately from those for ~ ( G ) ) .  

The result for ~ ( G )  is not explicitly known (and it would take some work to 

derive it from [FV1]). 

2. The algebraic s t r u c t u r e  o f  t h e  m o d u l i  spaces 

2.1 For each cover ~: X ~ p1 (of connected compact Riemann surfaces) the 

space X has a unique structure as algebraic variety defined over C (compatible 

with its analytic structure) such that ~ becomes an algebraic morphism (Rie- 

mann's existence theorem). Thus for each automorphism/5 of C, we can form 

the cover ~ :  X ~ --~ p1 obtained from ~: X ~ p1 through base change with/3. 

We say that ~ can be defined over some subfield k of C if X can be given a 

structure of variety defined over k such that ~ becomes a morphism defined over 
k. 

Let a = { a l , . . .  ,a~} E H~ be the set of branch points of~ ,  and ko = Q(a); thus 

ko is the field generated by the coefficients of the polynomial 1-[(x - ai), where 

the product is over those i -- 1 , . . . ,  r with ai ~ ~ .  Now let k be any subfield of 

C over which ~ can be defined. Then the branch points a l , . . . ,  a~ are algebraic 

over/C, and the absolute Galois group Gk permutes a l , . . . ,  a~. Therefore /c0 is 

contained in /C. Further, ~ can actually be defined over some finite algebraic 

extension of/Co (see [FV1, 1.5]). We want to determine a (minimal) field over 

which ~ together with all its automorphisms can be defined. (From now on ~ is 

again a Galois cover). 

2.2 The group Aut(C) (the automorphism group of C) acts as follows on the 

points p = l~, hi of ~in: 

= hZ-1  I 

for all /3 E Aut(C). Thereby h/~-l: Au t (X~ /P  1) ~ G is the isomorphism 

sending A z to h(A) for every A E Aut(X/P1).  

Clearly, if k is a subfield of C over which ~ together with all its automorphisms 

can be defined, then all/~ E Aut(C//C) fix the point p = I~, hi of 7-/'". For the 

converse we have to assume that the group G -~ A u t ( X / P  1) has trivial center. 

Then actually ~ together with all its automorphisms can be defined over the 

fixed field of the group of all/3 E Aut(C) with l~  = P. This follows by a simple 

application of Weil's cocycle criterion (see the proof of [FV1, Cor. 1]). 



414 H. VOLKLEIN Isr. J. Math. 

2.3 Now let ~0:X0 --* p1 be a Galois cover with group isomorphic to G, and 

with r branch points tl, ..., t~ E C that  are algebraically independent over Q. Set 

t = { t l , . . . , t r}  E /4r, and let Xl, . . . ,xr  be the elementary symmetric functions 

in tl .... , tr.  Then koCfQ(t)  = Q(x l , . . . ,x r ) .  By 2.1. there is a finite algebraic 

extension k of ko (inside C) such that  ~0 together with all its automorphisms can 

be defined over k. Let L/k (x )  be the corresponding function field extension, 

where x is the identity function on p1. Then L is regular over k, and L / k ( x )  is 

Galois with group isomorphic to G. 

LEMMA: Let R1 be a subring o f Q ( x l ,  ...,xr) containing Q[xl .... ,xr], and let R 

be the integral closure of R1 in k. There is u r 0 in R such that for every 

Q-algebra homomorphism A: R --* C with A(u) r 0 the following holds: 

Let S be the integral closure of R[x] in L, and let A be a homomorphism from S 

into the algebraic closure of C(x) that extends A and fixes x. Let k ~ and L ~ be the 

fields generated by the ]~-images of R and S, respectively. Then L~/ k~( x ) is Galois 

with Galois group canonically isomorphic to G( L / k( x ) ), and L ' / k' ( x ) is ramified 

at exactly r (distinct) places t~ .... , t~; the elementary symmetric functions in 

t~, ..., t~ are the A(xl), ..., A(xr). Further, L' is regular over k'. 

Proof: Similar as for [FV1, Lemma 0]. Use additionally that  we can write 

L = k(x, yl) = k(x, y2), with minimal equations f l ( X ,  yX) = 0 = f2(x,  y2), 

such that  the branch points of L/k (x )  are exactly the common zeroes of the 

discriminant of f l  and of f2 (where the fi  are viewed as polynomials in y, and 

the discriminant is then a polynomial in x). | 

2.4 Embed the space/dr into projective space • as in 1.1. Let X1, . . . ,Xr  be 

the coordinate functions on A r (where A r is embedded in li ~ as in 1.1). Then 

evaluation of functions at the point t E /dr yields an isomorphism Q(L/r) = 

Q(X1, . . . ,Xr )  --* Q(xl , . . . ,  x~). The field extensions 

k > Q(xl ,  ..., Xr) 

and 

L > k(x) >_ Q(x l , . . . , x r , x )  

give rise to sequences of normal varieties defined and irreducible over Q: 

7-/ ~ ' ,Ur  
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and 

(2) 7" A ]71 ]?1 ' ~ X  --+ /J~• 

(by taking normalizations in the respective function fields). Let ~: 7" -~ L/~ x F 1 

denote the map in (2). 

The group G is isomorphic to the group of all algebraic automorphisms (~, 

defined over Q, of the map 7" ~ ~ • F 1 (i.e., automorphisms a of 7- with 

A o a = A). We fix an isomorphism between G and this automorphism group. 

There is P0 C ~ lying over the point t of/dr such that evaluation of functions 

at this point yields an isomorphism Q(7-/) ~ k (extending the map Q(U~) 

Q(xl , . . . ,x~) ). This also yields an isomorphism Q(7-/ • ]71) __~ k(x), which 

extends to an isomorphism Q(T) -+ L. 

2.5 Let 7r: 7-/• ]?1 __~ 7-/ be projection. For each p �9 7-I let 7-p = 0 r o A ) - l ( p )  

denote its fiber in 7-; it has a natural map ~p: Tp --~ ]71. Since 7" is normal, 

its singular locus has codimension at least 2. Hence the image of this singular 

locus in 7-I is contained in a proper subvariety (as dim(7-/) = dim (T) - 1). Thus 

over a Zariski-open subset of 7-t, there are no singularities of 7". Then there is 

also a Zariski-open subset of 7-/such that the fibers Tp are non-singular over this 

subset (by "generic smoothness" [Ha,III, Cor.10.7]). Now it follows from Lemma 

2.3 that this subset contains another Zariski-open subset T/0 of ~ defined over 

Q with the following property: For each p �9 7-/0 the map ~p: 7-p ~ 171 is 

a (connected) Galois cover of ]71, ramified exactly at the points in ~(p). The 

group Aut(Tp/]? 1) is isomorphic to G, via restriction of the action of G on 7-; 

denote this isomorphism by hp: Aut(7-p/F 1) --* G. 

Removing the branch locus (= the image of the zero set of the Jacobian de- 

terminant) of ~, we can further assume that ~: ~o  --~ k~(7-to) is an unramified 

covering (in the complex topology), where ~(7-/0) is a Zariski-open subset of/d~. 

Set 

SO a ef { ( p , a )  �9 ~L~ 0 X ]?1 : a ~ ~I/(p) } 

(a Zariski-open subset of ? / •  ]71) and let To be the inverse image of So in T. Then 

G acts freely on To (because if a point of Tp, p �9 7-/o, is fixed by a non-trivial 

element of G then it is a branch point of ~p). The induced map To/G ---* So 

is bijective, hence homeomorphic (since a continuous proper bijection between 

locally compact Hausdorff spaces is homeomorphic). Thus the map To ~ So is 
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an (unramified) covering. Let/40 be the image of ,So in/4(r  + 1), under the map 

9 •  id. (Thus/40 is the set of all (a, a) C/4(r + 1) with a E ~(7/o), hence/40 is 

Zariski-open in/4(r  + 1) ). Then the map (I): T ~ / 4 r  • p1 restricts to a covering 

%-,/40. 

2.6 Now the moduli space T~(G) from w makes its appearance. Recall from 

2.5 that if t E To, then for p = ~rA(t) the map ~p: Tp --* p1 is a Galois cover of 

p1 with r branch points, and hp: Aut(Tp/P 1) --* G is an isomorphism. Further, 

t is a point of Tp that does not lie over a branch point of ~p. Hence the triple 

(~p, hp, t) represents a point of ~ ( G ) .  

LEMMA: The map  ft: To --~ T~(G), t ~-* I~p, hp, tl, where p = ~rA(t), is 

continuous, even a local homeomorphism.  Also the induced map  w: 7/0 --* 7~in, 

P ~-* I~p, hp[, is a local homeomorphism.  

Proo~ Fix some t E To, let (p, ao) be its image in 7/0 • p1. Write q2(p) = 

{ab ..., at}. Since the map T --*/4r • p1 is a local homeomorphism on To, there is 

a neighborhood M of t in To that is mapped homeomorphically to a neighborhood 

/4 of ({al, ..., at}, a0) in/4, • p1. We can take/4 of the following form: It consists 

of all ({51, ...,5~},50) with 5i E Di for i = 0, ...,r, where Do, .. . ,Dr are disjoint 

discs on p1 around a0, ..., at. Then A / =  ~rA(A/I) (the image of M in 7-/0) is 

mapped by �9 homeomorphically to a subset ~ D1 • . . .  • D~ of/4r. Thus Af 

is contractible. Further, the set .hf • p1 \ ( D 1  [3 . . .  t3 Dr) is contained in ,50; 

denote its inverse image in To by AY. 

For any t E M ,  let (l~, 50) be its image in 7/0 • p1. Write ~(1~) = {51, ..., 5,}. 

The image I~1~, hl~, tl of t" in T~(G) is associated to the triple ({51, ..., 5~}, 50, ] )  

(see 1.4), where 

] :  7rl(P 1 \ { 5 1 ,  ..., a t} ,  50) ----+ A u t ( ~ / P  1) ~ G 

is given as follows: The isomorphism with G comes from restriction of the action 

of G on T, and the surjection 7rl(P 1 \{51, . . . ,5r} ,5o)  ~ Aut(TI~/P1) corre- 

sponds to the base point t" �9 7~ over 50 (see 1.4). 

Since Af and Do are contractible, we have a canonical isomorphism 

(3) 7rl(Af • p1 \ ( D 1  U . . .  U Dr), (p, a0)) ~ ~rl(P 1 \{51,  . . . ,  at}, 50) 

Via this isomorphism, the natural action of the left fundamental group on the 

fiber in AP over (p, co) corresponds to the action of the right group on the fiber 
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in :~  over no. The latter action is transitive (since ~ is connected), hence 

also the former action is transitive, and Af' is connected. Identify the groups 

Aut (H ' / (Af  x F1 \ ( O 1  U ... U D~))) and Aut(: /~/F 1) canonically with G (via 

restriction of the action of G on T). 

Via (3), the surjection ]:  ~1(]~ 1 \ { a l , . . . , a r } , h o )  ----* e that corresponds to 

the base point t E :~  is identified with the surjection 7rl(A/" x F1 \ ( D 1  U- - .  U 

D~), (p, a0)) -* G that corresponds to the base point t C A/". This means that 

the surjections ] (as t ranges over AA) all correspond to each other under the 

isomorphisms (1). This proves that ~t maps ~4 homeomorphically onto the basic 

neighborhood A~(D0, ..., D~) of ~t(t) in T~(G) (from 1.5). Similarly, w maps A/" 

homeomorphically onto the basic neighborhood Af(D1,..., D~) of w(p) in ~ " .  

This completes the proof. I I  

2.7 Set To ~ = f~(To), 7-/~ = w(?-/0). These are open subsets of T~(G) and 7-/'n, 

respectively (by the above Lemma). The covering To -~ /4o (from 2.5) is the 

composition of ~: To ~ T 0' with the covering ~(~): T~(G) -~ L/(r + 1) (from 1.5); 

this is immediate from the definitions. Since ft is a continuous map between 

(complex) manifolds, it follows that ~: To --~ T o' is a covering. Analogously, the 

covering ~: 7-/0 --~ ~(?-/o) is the composition of w: 7-/o ~ H~" with the covering 

62~": ~/~" ~/ r  hence also w: ~0 ~ ~/~ is a covering. For later use, we record 

the formulas 

(4) 

It is now essentially clear how to complete the proof of the main theorem: 

Transfer the variety structure on To to T~ via the covering f~. By uniqueness of 

normalization, also the closure of T~ in T~(G) (a union of components of T~(G)) 

inherits this variety structure. Complete the proof by repeating this to cover all 

components of T~(G). 

However, there are still many details to check. Things work out much nicer 

if we assume that G has trivial center. This is anyway the case used in most 

applications (see [FV2], [Vhl], [V53]). The general case can be reduced to the 

case of trivial center as in [FV1, 5.2]: Choose a group G with trivial center 

and with r - 1 generators that maps surjectively to G. Then use the natural 

map T~(G) ~ u~=2~s(G ) to transfer the variety structure from T~(G) to T~(G); 

i.e., T~(G) gets the structure as quotient variety of a closed and open subvariety 

of T~(G). More precisely, let C be a Q-irreducible component of T~(G) that 
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maps to ~ ( G ) ,  and let C be the image of C in ~ ( G ) .  Then C is a union 

of connected components of ~ ( G ) ,  and C -~ C is a (unramified) covering, 

compatible with the coverings (~(~) and its analogue) from C and C to LC(r + 1). 

Let K be the Galois closure of the field extension Q(r + 1)). Let Go 

be the corresponding Galois group, and let Co be the normalization of/g(r  + 1) 

in K. The corresponding map Co --~ L/(r + 1) is a covering, and Go acts 

canonically as a group of automorphisms of this covering such that the induced 

map Co~Go --~ Ll(r + 1) is an isomorphism. Since the map Co --~ L/(r + I) 

factorizes as 

Co --, 5 - - ,  c ~ U(r + 1) 

we have Co/Gx ~- C for some subgroup G1 of Go. Now equip C with the 

structure as quotient variety by the fixed point free action of G1. Repeat this 

procedure to cover all components of T~(G). 

So from now on we assume G has trivial center. Then we can assume (see 2.2): 

The field k (from 2.3) is the fixed field of the group of all ~ C Aut(C) with 

[~'o, h f  = [~o, hi 

where h is any isomorphism Aut(Xo/l~ 1) ~ G. 

2.8 From the definitions it is easy to check that 

~ ( ~ )  = ~(p)' ,  a ( t ' )  = a ( t ) '  

for all p E 7-/0, t E To, ~ E Aut(C). Thereby, ~ acts on 7-/i~ as defined in 2.2, 

and acts on ~ ( G )  in the analogous way: Sending [~, h,p] to ] ~ ,  h~-l ,p~[.  

2.9 Consider again the generic point Po of 7-/from 2.4. It lies on the Zariski- 

open subset 7-/o. For the generic cover ~o: Xo ~ px (with which we started our 

development in 2.3), we have 

~(p0) = I~0, hol 

for some isomorphism h0: Aut(X0/P 1) -~ G. For this it suffices to show that 

the cover ~P0 is equivalent to ~0. This follows from the fact that both covers 

correspond to the function field extension L/k ( x )  from 2.3 (clear by construction). 
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2.10 Now assume that Pl is a point of 7-/o with w(pl) = w(po). Then ~(Pl) = 

~(Po) (= t) by (4). Since Po is generic, all points in the fiber ~ - l ( t )  are 

conjugate under Gko, where ko = Q(t) = Q(xl, . . . ,x~) as in 2.3. Thus there is 

/3 C Ant(C) sending po t o p  1. Then/3 also sends w(po) to w(pl) (by 2.8). But we 

assmned w(pl) = w(Po), hence/3 fixes w(po). Since w(po) = I~o, hol (by 2.9), it 

follows from 2.7 that /3  is the identity on k. But k = Q(Po), hence/3 fixes Po. 

Thus Pl = Po. 

We have proved that if w(pl) = ~(Po) then Pl = Po (for any pl E ~o).  Thus 

the covering w: 7-/o --~ ~ has degree 1, hence is an analytic isomorphism. Then 

also ~: To --* TO' has degree 1, thus is an analytic isomorphism. 

LEMMA: The map ~ (resp., w) is an analytic isomorphism from To (resp., 7-(o) 

onto the open subset ~ (resp., ~'o) ofT~(G) (resp., ~'"). The closure T '  (resp., 

7-l') of T o' (resp., n~o) is a union of connected components of T~(G) (resp., 7-['~ 

And T'  \ TO' (resp., ~ '  \ ~o)  is a nowhere dense analytic subset of T '  (resp., 
~'). 

Proo~ It remains to prove the last two assertions. We do the case of 7-'. The 

other case is analogous. 

Recall that/4o is Zariski-open in/4(r  + 1). Thus the complement of/g0 is an 

algebraic, hence analytic (proper) subset of/4(r + 1). Thus/40 is connected [GR, 

Ch. 7,w 

The restriction of ~)(~) yields a covering TO' --+/40 (by (4), since 01%: To -*/40 

is a covering). Then each component C' of TO' still covers the connected L/0. Let 

C be the component of T~(G) that contains C ~. Since C' covers/40 and is open 

in C, it follows that C' is a component of the full inverse image C" of/40 in C. 

Since U( r+  1) \ /40 is an analytic subset of/4(r + 1), the set C \ C" is a (proper) 

analytic subset of C. Since C is a connected complex manifold, C"  is connected 

[GR, Ch. 7,w Hence C' = C", which implies that C' is dense in C. Thus 

C is contained in T' ,  and it follows that T '  is the union those components C 

of T~ (G). Finally, T '  \ 7-d is the union of the C \ C ' ,  hence is nowhere dense 

analytic. | 

2.11 Set ~- = (I)-1(/4(r + 1)), the inverse image of/4(r + 1) (C/4r • 71) in 7-. 

This is an open subvariety of 7- defined over Q, containing To = (1)-1(/4o). 

LEMMA: The analytic isomorphisms f~: To --. T d and w: 7-lo --* ~'o extend 

uniquely to analytic maps ~ : q- --~ T '  and ~: 7-[ -* 7-l', respectively. We have 
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r 1 6 2  - -  o a n d  �9 = o a n d  • id) o hl~-  = A~ o 

Proof: Again we prove this only for fl, the other case is analogous. 

Since T'  is a union of components of T~ (G), the covering (I)(*): T~(G) --~/4(r+l) 

restricts to a covering (I)1: q'l --*/4(r + 1). Let t E ~- \ To, and let V be an open 

ball around (I)(t) in /4( r  + 1). Since (I)': T '  --~/4(r + 1) is a covering, we may 

assume that 

(~I~')-l(v) = U Wi 
i----1 

where the W~ are disjoint open sets in T ~, and ~ maps each Wi homeomorphically 

onto V. 

Let U be the connected component of (I)-I(V) that contains t. The space 7" is 

a normal algebraic variety (by definition), hence the underlying complex space is 

also normal [SGA1, Exp. XII, Prop. 2.1]. Then also its open subset (I)-I(V) is 

a normal complex space. The components of a normal complex space are open 

[GR, p. 171], hence U is open in T. Then U is also a normal complex space. 

Since/4(r + 1) \/-40 is a nowhere dense analytic subset of/4(r  + 1) (see 2.10), 

its inverse image T \ To under (I) is a nowhere dense analytic subset of ~-. Hence 

with U also UNTO is connected [GR, p.145]. Since ~ maps UNTO into ((I)')-I(V) 

(by (4)) ,  it follows that ~ maps U m TO into some Wi. Thus for all s E U m TO 

we have 

~(s) = (~'lw,) -1 o r 

Now we can extend ~ to U by the same formula (because the right hand side is 

defined for all s E U). This extension is unique because U m To is dense in U. 

Thus all these extensions glue to give the desired ~. 

The extension ~ is obtained analogously. The other assertions in the Lemma 

follow by continuity (since the respective formulas hold for fl and w, cf. (4) and 

2.6). I 

2.12 LEMMA: The  analytic i somorphisms fl: To ~ To ~ and ~: ?-lo ~ "HI o ex tend  
~ ~ 

uniquely to analytic i somorphisms ~: T -~ T ~ and fz: 7-I ~ 7-I ~, respectively. 

Proof: Again we consider only the case of ft. 

In the set-up of 2.4, let q" be the normalization of ~ • ~1 in the extension 

field L of Q(xl, . . . ,  x~, x), and let 

~: I t  --, Fxp1 
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be the corresponding map. T h e n  ~)--1(/~ r X p1) is normal and maps through a 

finite surjective morphism to//~ x p1, hence it is isomorphic to the normalization 

of/ /r  • in L [Mu, p. 277]). Thus we may assume T = ~ - l ( u r  • r = ~[~r. 

Note that q- is a projective variety [Mu, p. 280]. Further, ~ is a finite, hence 

affine map [Mu, p. 172, p. 277]; i.e., for any Zariski-open, affine subset .4 of 

x yl ,  the inverse image ~ - I ( A )  is again affine. 

Recall from 2.10 that To ~ = 7" ~ \  A, where A is a nowhere dense analytic 

subset of the manifold T ' .  Fix a point a E A, and let ,4 be a Zariski-open, affine 

neighborhood of r in Pr • p1. Let D O (resp., D') be an open (resp., compact) 

ball in the manifold T '  around a, with D O C D' C (r  Then r  is a 

compact subset of A (C F • p1 ), hence D %f ~ -  1 (r (D,)) is a closed subset of 7- 

(in the complex topology). Hence D is compact (since 7" is a projective variety). 

Now embed the affine variety (~-1 (A) into some affine space C ~ . The inclusions 

~2-1(D ~ n To ~) C D C ~-I( .A) imply f~-liD0n7 o, = (Wl, ...,Wn) for holomorphic 

(complex-valued) functions wi on D O O To ~. These functions wi are bounded 

because D is compact. By Riemann's extension theorem [GR, p. 131], it follows 

that  the w~ extend to holomorphic functions on D ~ (Recall that D o n T d = 

D O \ A, where A is a nowhere dense analytic subset of T~). 

Then s extends to an analytic map on D O with values in q'. Because of the 

uniqueness of such an extension, these local extensions glue together to give a 

global extension of f~-i to an analytic map Y~P: :T ~ --* 2-. By continuity, we must 

have f l 'o  ~ --- idq-, and ~ o f~' = r The latter implies that  the image of ~ lies 

in =F (= ~- l ( /A(r  + 1)) ). Then also ~ o f~' = idT,, hence ~ is an isomorphism 

from T onto 7 "1. | 

It follows from Lemma 2.11 and 2.12 that  we can actually take 7/o = 7/ and 

To = ~" in the above; i.e., the maps w and f~ can be defined on all of 7-I and 

7-, respectively, by the formulas from Lemma 2.6. (Namely, the spaces 7 ~ and 

7-/~ have the properties required for To and 7-/0, and via the isomorphisms ~ and 

& these properties are inherited by 2- and 7-/). Of course, the so-defined maps 

w: 7-/ ~ 7-/~ and ~: 7- ~ 7 ~ are analytic isomorphisms. These isomorphisms 

equip those components of our moduli spaces 7-/i~ and T~(G) that  are contained 

in 7/~ and 7 ~, respectively, with the desired structure of variety defined over Q 

(see below). First we show that all components of the moduli spaces are covered 

by this procedure. 
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2.13 The space 7-/' contains the point w(p0) = ]~0, hol (from 2.9), where qVo is 

the original cover that was the starting point of our construction in 2.3. Applying 

the automorphisms (~A of ~.~in from 1.5 (that commute with the Aut(C)-action on 

7/i~ we transfer the above variety structure from ~ t  to the 5A(7-/I). The union of 

these 5A(7-/') contains all points I~0, hi (with h any isomorphism Aut(~o) --~ G). 

This implies the following: As ~o ranges over all Galois covers of ~1 with group 

G that are ramified exactly at the points tl ,  ..., t~, the corresponding spaces 7-I I 

together with their 5A-conjugates contain all points of 7-/in that lie over the (base) 

point t. Hence the union of these spaces is all of 7t TM (since they are unions of 

components of 7-/~"). This equips 7-/~~ with the desired variety structure. The 

procedure for T~(G) is analogous (since over each component of 7-/~" there is a 

unique component of ~ ( G ) ) .  

Now we have equipped 7-/~" and ~ ( G )  with a structure as variety defined over 

Q. By 2.8, the formulas from the main theorem for the action of ~ E Aut(C) 

hold. The Q-variety structure on our spaces is uniquely determined by these 

formulas, and by the C~variety structure. Uniqueness of the C-variety structure 

follows from the following 

LEMMA: Let  Y be an open subvariety o f P  ~ or ~ x ]p1, and let Y~ (i = 1,2) be 

the normalizat ion of Y in the finite field extension Li of C(Y). Let  fi: Yi ~ Y be 

the corresponding map,  and assume fi  is an unramified covering in the complex  

topology. I f  e: Y1 ---* Y2 is an analytic isomorphism with f2 o e = f l ,  then e is an 

algebraic isomorphism (defined over C). 

P r o o f  This follows from the uniqueness part of the generalized Riemann exis- 

tence theorem (cf. IS, Th. 6.1.4]). The uniqueness is much less deep than the 

existence part. For completeness, we sketch a direct proof in our special case. 

STEP 1: First note that the problem is local on Y (see [Mu, p. 278]), so we 

may assume Y is affine. Then also Y/is affine, and its coordinate ring C[Yi] is the 

integral closure of C[Y] in Li. Once we have shown that the map h ~-* he -1 maps 

C[Y1] into C[Y2], it follows that this map is a ring isomorphism, and e equals the 

corresponding algebraic map Y1 = Spec(C[Y1]) ~ Y2 = Spec(C[Y2]). 

STEP 2: Use Riemann's extension theorem (as in 2.12) to extend e to an analytic 

isomorphism 171 ~ I72, where ~ is the normalization of 17 ~ P~ or ~t ]P~ • IP 1, 

respectively, in Li. It is well-known that all meromorphic functions on I 2 are 

rational [GR, p. 186]. To deduce the corresponding statement for ~ ,  note 
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that the field of meromorphic functions on ~ has degree < n over the field of 

meromorphic functions on 17, where n is the degree of the analytic (ramified) 

covering ~ --* ] 7. 

It follows that the map h H he -~ m a p s  C(171) = C(Y1) = L1 into C(172) = 

C(Y2) = L2. Then it also maps C[Y1] into C[Y2] (because C[Yi] is the integral 

closure of C[Y] in Li). Now Step 1 applies, and we are done. | 

The Lemma implies that the maps e A and (~A are algebraic morphisms (defined 

over C). They are actually defined over Q: This follows from the formulas in the 

main theorem for the action of/~ E Aut(C) (as in [FV1, 6.2]). This completes 

the proof of the main theorem. 

3. Cover ings  of  affine space  minus  t h e  d i s c r i m i n a n t  locus 

In this section we get to the corollaries about coverings of Or = A" \ D~. Recall 

that we view Or as the space of all subsets of C of cardinality r. 

3A. COVERINGS DETERMINED BY BRAID GROUP ACTION ON GENERATING 

SYSTEMS. 

3.1 Consider the space 

~ ( a )  ~ '  A;-I(~/~~ • {~}) ,  

the subspace of T~(G) consisting of all I~, h, Pl where ~: X -~ p1 is a (Galois) 

cover of IP 1 with r branch points, none of which equals oo, h: A u t ( X / P  1) ~ G is 

an isomorphism, and p is a point of X with ~(p) = o~. As in 1.4, the points of 

7-/r (G) can equally well be thought of as pairs (a, f ) ,  where a = { a l , . . . ,  a~} E Or 

and f :  F = 7rl(P 1 \ a, co) -* G is a surjection that does not factor through the 

canonical map F --* Fi, for any i (for the definition of Fi, see 1.2). 

The topology on 7-/r(G) induced from that of T~(G) (see 1.5) has a basis con- 

sisting of the following sets A/I~: Choose pairwise disjoint open discs D 1 , . . . ,  Dr 

in C. Then A/I~ corresponds to the set of pairs (a, f )  as above, where [a N D~ I = 

1 for all i, and where the maps f are all induced from a fixed surjection 

lrl(P 1 \ ( D 1  U . . .  U D~), c~) ~ G, via the canonical isomorphism 

7rl(P 1 \ ( D  1 t J . . -  O Dr), oo) - ~rl(P 1 \ a, c~) 

One checks that the map qoo: 7-/r(G) ~ (9~ that sends ]~, h,p[ to the set a 

of branch points of ~, is a covering. Hence 7-/r(G) is a (closed) submanifold of 
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Denote the restriction to 7-/r(G) of the maps e A  (A E Aut(G)) from 1.5 again 

by CA. These maps are automorphisms of the covering ~oo: 7-/r(G) --~ Or. 

3.2 It follows from the main theorem that ~ ( G )  has a unique structure as 

algebraic variety defined over Q such that q2~ and all s are algebraic morphisms 

defined over Q, and the automorphisms of C act on the points I~, h, pm of 7-/~(G) 

as given in the main theorem. 

3.3 The next goal is to determine the space 7-/r(G) topologically (as a covering 

of O~). Fix a base point b = {bi, ..., b~} in O,. The fundamental group 

Br = ~rl(O~,b) 

of O,,  based at b, has generators Qi, ..., Qr-1 defined in [FV1, 1.3]. These gen- 

erators satisfy the defining relations for "the Artin braid group (and no others), 

hence B, is isomorphic to the Artin braid group. This is all well-known (see [Ar]), 

but we will actually not need it here. 

By covering space theory, each covering of Or is determined (up to equivalence) 

by the natural permutation representation of the fundamental group ~ri (O~, b) on 

the fiber over b. Recall that this permutation representation is given as follows: 

Each element of ~ri(O~, b), represented by a closed path c, maps a point p lying 

over b to the endpoint of the unique lift of c with initial point p. 

We will determine the permutation representation of Br corresponding to the 

covering @oo : 7-/,(G) --* O~. First we give another description of the fiber 

~ ( b ) .  

3.4 Choose generators 7i,... ,7~ of 

r o  = ~ri(P i \ b, oc)  

as usual (i.e., ~/~ is a loop going clockwise once around bi, see e.g. [FV1, 1.3]). 

Then F0 is a free group on the generators "Yi, . . ,%-1 ,  and we have "yi...~/~ = 1 

(for suitable labelling of the b~'s). 

Let E~ be the set of all (gi, ..., gr) E G ~ with the following properties: g i . . . g , .  = 

1, the group G is generated by gl, ..., g~, and gi ~ 1 for all i. Then the surjections 

f : F0 ~ G with f( ' /i) r 1 for all i correspond bijectively to the elements of E~ 

(where the tuple (f('Yi), .-., f('yr)) is associated to f) .  These surjections f also 

correspond bijectively to the points in the fiber ~ i ( b )  (by 3.1); namely, the 
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condition that  f does not factor through the canonical map F --* Fi is equivalent 

to f(Ti) ~ 1 (see [FV1, 1.3]). 

Thus we have set up a bijection between the set g~ and the fiber ko~l(b). Via 

this bijection, the covering ~ : 7-/~(G) --* (D~ yields a permutation represen- 

tation of B~ = <  Q1,.. . ,Q~-I > on C~. The action of the Qi's on s can be 

described explicitly: 

THEOREM: The  covering ~ : Tl~(G) --~ O~ corresponds to the permuta t ion  

representation o f  B~ = <  Q1, ..., Q~-I > on g~ where Q~ (i = 1, ...., r - 1) sends 

(.ql, "- ,  gr) E ~r to: 

(gl,..., gi-1, gi+ l , g~+l gigi+ l , ..., g,  ) 

The proof is the same as for the analogous result about the permutation rep- 

resentation of 7rl(//~,b) corresponding to the covering koin : 7-/~o(G) __~ b/~ (see 

[FV1, 1.3, 1.4]). To remind the reader, the group ~r1(/4,, b) is the Hurwitz braid 

group, a quotient of the Artin braid group (see [BF]), and its permutation rep- 

resentation corresponding to ~i~ is just the action on s Inn(G) (the se~t of 

Inn(G)-orbits on g~) induced from the action of B~ on g~. Thereby, Inn(G) is 

the group of inner automorphisms of G. 

Actually, the new result implies that previous one, because the covering k9~ 

factorizes through ~i~ 

3 B .  COMPONENTS OF THE COVERINGS, AND CONJUGACY CLASSES OF G.  

We conclude the paper with a study of certain subspaces of 7/,(G) that  are 

associated to r-tuples of conjugacy classes of G. 

3.5 Let C = (C1, ..., C~) be an r-tuple of conjugacy classes of G. The Nielsen 

class Ni(C) is defined to be the set of all (gl, ...,g,) E s for which there is a 

permutation ~r E S, with g~(i) E Ci for all i. Clearly, the set Ni(C) is invariant 

under the above action of B, on 8~. 

By covering space theory, the connected components of 7-/~(G) are in 1-1 cor- 

respondence with the orbits of B~ on g~: Each component intersects the fiber 

�9 ~l(b) (identified with g~) in the associated B~-orbit. I~et ?-((C) be the union of 

the components of 7-/~(G) that  correspond to the B~-orbits contained in Ni(C). 

On the fiber ~X(b)  (identified with s the map eA acts as follows: It sends 

(gl,...,g~) to (A(gl),...,A(g~)). This is immediate from the definitions. It 
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follows that  eA leaves 7-/(C) invariant if and only if the automorphism A of G 

permutes the conjugacy classes C1, ..., Cr. 

The definition of the spaces 7-/(C) seems to depend on the choice of the base 

point b. We show that  this is not so, by giving another characterization that  does 

not depend on the base point. First we need some topological preparations. 

3.6 THE DISTINGUISHED GENERATOR. For 0 < s < t, and a E C, consider the 

annulus 

R =  { z e C :  s< lz -61<t} .  

If X : R I ~ R is a connected covering of finite degree e, define the distinguished 

generator a of the (cyclic) group Aut(R'/R) as follows: We know that  the cov- 

ering X is equivalent to the covering Xe : R --* R, z ~-~ (z - a) e + a. Thus there 

is a homeomorphism 5 : R' --~ R with Xr = •. This 6 induces an isomorphism 

between Aut(R' /R)  and Aut(xe : R ~ R). Let a E Aut(R' /R) be the image 

of the following generator of Aut(xe : R --* R): rotation in counter-clockwise 

direction around a by the angle 2~r/e. 

Another choice of 6, say 61 : R ~ --* R, results in an element a l  that  is conjugate 

to a under 6-161 E Aut(R'/R).  Since Aut(R' /R) is abelian, we see that  a does 

not depend on the choice of 6. Thus the distinguished generator is well-defined, 

and then also functorial: If  the covering R ~ ~ R factors as R ~ --* R" ~ R, then 

the distinguished generator of Aut(R' /R) induces that  of Aut(R"/R).  

Let "y be a closed pa th  in R, based at the point p, and going once in clockwise di- 

rection around a circle centered at a. Consider the homomorphism ~ : 7rl (R, p) --* 

Aut(R' /R)  associated to any point in x - l ( p )  (by 1.2). (Actually, each such point 

yields the same homomorphism, since Aut(R' /R) is abelian). Clearly, t maps -~ 

to the distinguished generator. 

3.7 THE DISTINGUISHED INERTIAL GROUP GENERATORS. Let ~ : X ~ •1 

be a Galois cover with branch points a l , . . . , a r ,  and set H ~ -  ~ Aut(X/P1) .  Let 

DI,  ..., Dr be disjoint discs around al ,  ..., at,  respectively. It  is well-known that  

each connected component Xij of ~-1  (Di) contains exactly One point p~j over a~. 

Hence the stabilizer of Pij in H (called the inertial group of Pij) fixes Zlj,  and 

induces the full automorphism group of the unramified covering X~j \{P l j}  --* 

Di \{a~}. The distinguished generator of this automorphism group (from 3.6) 

yields a distinguished generator a~j of the inertial group ofpij. If e E H maps 

p~i to pij, then e conjugates aij into aij, (by the functoriality in 3.6). Since H 
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acts transitively on the points over ai, it follows that the alj (for fixed i) form a 

single conjugacy class of H. 

Clearly, the aij  do not depend on the choice of D1, ..., D~. 

3.8 Now we can give the base point free characterization of the subspace 7-/(C) 

of 7-/~(G). Recall that  ~ ( G )  is the set of all [~, h, pl where ~ : X --~ p1 is a 

(Galois) cover with r branch points, none of which equals co, h : Aut (X/P  1) --, G 

is an isomorphism, and p is a point of X with ~(p) = co. 

PROPOSITION: Let C = (C1, ..., Cr) be an r-tuple of conjugacy classes of G. 

Then 7t(C) is the subspace of TYr(G) consisting of all I~, h,p[ E I ~ ( G )  with the 

following property: The branch points of~  can be labelled as al, ..., ar such that 

the conjugacy class of distinguished inertial group generators over ai corresponds 

to C~ under h (for i = 1,..., r). 

Proof: Let 7/'(C) be the set of all [~, h,p[ E 7tr(G) with the above property. 

CLAIM 1: 7-/'(C) is open and closed in 7-I~(G). Since ?-/~(G) is the disjoint union 

of the H'(C) (with repetitions deleted), it suffices to show that 7-/'(C) is open. 

Fix a point p = [~, h, p[ of 7-/'(C), and label the branch points of ~ as a~, ..., a~, 

as in the Proposition. Choose disjoint discs D1, ..., D~ around as, ..., a~, where 

co lies in none of the Di. Further, pick smaller discs D~ C Di around ai. Set 

X0 = ~ - l ( p X  \ (D~ U ... U D')) .  

By the definition of the topology on 7-/r(G), there is a neighborhood Af of p 

such that each p' E A/" can be written in the form p' = [~', h',p[, where ~' has 

exactly one branch point in each Di, a n d  (~9 ' ) -1(~ 1 ' ' ' \ ( D  1 U... UDr)) is identified 

with Xo. Further, h' corresponds to h under the isomorphisms 

(5) Aut(X'/]? 1) ~ Aut(Xo/P ~) ~ Aut (X/P  1) 

(that come from restriction to X0). 

Clearly, in the definition of the distinguished inertial group generators for ~, 

one can replace the punctured discs Di \ {a i}  by the annuli Di \ D~. Since 

and ~' coincide over Di \ D~, it follows that the distinguished inertial group 

generators for ~ and ~' correspond via the isomorphisms (5). Thus all p' EAf  

lie in ~'(C). This proves Claim 1. 

CLAIM 2: ~'(C) intersects the fiber ~ol (b)  (identified with s as in 3.4) in the 

set Ni(C). Recall the identification of the fiber ff~i (b) with s from 3.4: Firstly, 
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for p = I~,h, pl E ~ l ( b )  consider the map f :Fo = 7rl(~ 1 \ b ,  oo) ~ G, which 

is the composition of t : F0 ~ Au t (X/P  1) (associated to the point p C ~-1(c~) 

) wi th  h. Then  p is identified with the r - tuple  (gl,-..,g~) E E~, where g~ = 

f('Yi) = h~(~/i) �9 

Choose again disjoint discs D1, ...,D~ around bl, ...,b~. Fix some i = 1, ...,r. 

We may assume that  "~ goes on a path w to a point inside D~, then goes on 

a circular path -y once around b~ (in clockwise direction), and returns to oc via 

the inverse of w. Let p' be the endpoint of the (unique) lift of w to X \ ~ - l (b )  

with initial point p. Then p' lies in a unique component C of : - I (D~) .  Let p" 

be the unique point in C M ~-l(b~). From 3.6, applied with R = D~ \{b~}, 

R' = C \ {p"} ,  it follows that ~(~/~) is the distinguished generator for the inertial 

group of p ' .  

Thus the point p = [~, h,p] E ~ ( b )  lies in 7-U(C) if and only if (gl .... , g~) C 

Ni(C), because g~ = h~('y~). If p is identified with (gl, ..., g~) as above, Claim 2 

follows. 

Now we can conclude the proof: By Claim 1, ~/'(C) is a union of connected 

components of 7t,(G). The same is true for 7-/(C) (see 3.5). Furthermore, 7-/'(C) 

and 7-/(C) have the same intersection with the fiber ~o~(b) (by Claim 2 and the 

definition of ~(C)).  This implies 7-/(C) = ?-/'(C). | 

Remark: The r-tuple (gl, ..., g~) (of distinguished inertial group generators) is 

usually called a description of  branch cycles of the cover ~. The property in the 

above Proposition was expressed in [Fr] by saying that  ~ lies in the Nielsen class 

of  C. | 

3.9 THE FIELD OF DEFINITION OF 7-~(C). The absolutely irreducible compo- 

nents of 7-/~(G) (viewed as variety) coincide with the connected components (in 

the complex topology). Thus 7-/(C) is a (closed and open) subvariety of 7-/~(G) 

defined over 0 .  We are going to determine how G(} permutes the 7-/(C). 

For each integer m let C m be the conjugacy class of gm with g C C~. The 

r-tuple C = (C1, ..., C~) is called rational if for each integer m prime to the 

order of G, we have that  C~,  ..., C~  is a permutation of C1, ..., C~. Set C m = 

(C ? ,  ..., C~) .  

THEOREM: Let  ~ E GQ, and let m be an integer such that  j3 -1 acts on the 

[Gi-th roots of  unity  as 71 ~-* ~m. Then fl maps "H(C) to 7-l(cm). Thus 7~(C) is 
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defined over Qab (the field generated by all roots of unity). I f  C is rational then 

~(C)  is even defined over Q. 

Proof'. Extend 3 to an automorphism of C (that we again denote by j3). Consider 

any p = [~, h,p[ E 7~r(G), and label the branch points a l ,  . . . , a t  o f ~  : X --} p1 as 

in the above Proposition. By 3.2 we have p~ = I~ ~, h3-X,pp[. Thus it suffices 

to show (by the Proposition) that  for the cover ~ : X ~ ~ ]p1, the class of 

distinguished inertial group generators over a~ corresponds to C ~  under hi3 -1. 

This follows from the branch cycle argument of [Fr, p.63]. For completeness, we 

give the argument in the following Lemma. | 

LEMMA (The branch cycle argument): Let al E C be a branch point of the 

(Galois) coyer ~ : X --~ p1. Let Pl be a point of X over al, and let g E 

A u t ( X / ~  1) be the distinguished generator of  the inertial group of  pl.  Let e be 

the order of g. Let /3  c Aut(C),  and let m be an integer such that ~-1 acts on 

the e-th roots of unity as ~] ~-, 7] m. Then (gZ)m is the distinguished generator 

of the iner t ia /group of p~. 

Proof." Let O1 be the local ring of X at Pl. Its completion contains an element 

t with t e = x, where x is the image of ~o - al in 01. LFrom the definition of 

distinguished inertial group generator, it follows that  g(t) = ~ t ,  where rle = 

exp(2~ri/e) is the "distinguished" primitive e-th root of 1. Then g~(t ~) Zt ~ 

hence (gZ)m(tZ) = ~]~t ~. This proves the claim. | 
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